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The problem of causal abduction

» Say your new exotic plant starts to
wither as the summer season comes. Is
this because it dislikes

» Thesun?

> The humidity?

» The insects coming out with the new
season?

» The other plants newly growing
around it?

» Any combination of the above?

Figure: A plant
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Causal selection judgments

» An expert explanation: ‘The exotic
plant withered because of the insects’

» Singles out one salient causes amongst
all of the factors that might have
influenced the outcome: causal
selection.

Figure: An uncle's advice
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Counterfactual models
Quillien and Lucas (2023); lcard et al. (2017)

» Our best theories of such judgments (Icard et al. (2017); Quillien and Lucas
(2023)) rely on counterfactual dependence:

1. Sample a number of counterfactual worlds to the present situation, where the
probability for each world to feature a certain event depends on its normality, and
the outcome on one's causal knowledge.

2. Look at the co-variation between events of interest and the outcome across
counterfactuals.
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Causal Inferences from Explanation
Previous Study: Kirfel et al. (2022)
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Limitations of Kirfel et al. (2022)

Suppose that A is an abnormal variable, B is a normal variable.

AN B +—— “Because of A"

AV B +—— “Because of B"
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The present study
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» Subjects wins and losses are determined as a function of the rule
WIN <— (AAD) Vv C

» Draws from each urn can have coloured or uncoloured balls, allowing for a total
of 216 = 65,536 different possible rules.
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Design

Three conditions:
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Experiment

Causal selection condition

Draw
Remaining samples: 10
Draw sample
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Experiment

Causal selection condition

Draw Win « (AAD)VC|
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Here, you won because you drew a colored ball from urn C!

Remaining samples: 9

Draw sample
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Experiment

Causal selection condition

Win « (AAD)VC|
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Experiment

Causal selection condition
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Experiment

Causal selection condition

Draw

Win « (AAD)VC|
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Experiment

Evaluation

Predict
Predic the fllowing outcomes: Observation history:
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Results
(N=298)
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Experiment Model

Inference from explanation over complex rules

P(E|O, R)P(O|R)P(R)
P(O,E)

P(R|O,E) =
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P(E|O, R)P(O|R)P(R)

P(R|O,E) = P(0, E)
PRI - - H)=
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Experiment Model

Inference from explanation over complex rules

P(E|O, R)P(O|R)P(R)

P(R|O,E) = P(O.E]

P(- : M| - E,RP( - HR PR
P(--*-®H, - - W

Explanation likelihood:
exp (k(E, O,R)/T)

P(E| O,R) = oxp (ZE,—GE x(E;, O, R)/T)
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Model Results
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Discussion

Conclusions

» Causal selection judgements seem to be more informative forms of explanation to
infer complex causal rules.
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Discussion

Conclusions

» Causal selection judgements seem to be more informative forms of explanation to
infer complex causal rules.

Next steps
» Extend inference task to other rules of varying complexity

» Collect explanation judgements from participants to provide as explanations to
other participants.
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Thank you for your attention.

Thanks to Salvador Mascarenhas and Neil Bramley for their guidandce on the project.
Thanks to Tom Icard and Tadeg Quillien for fruitful discussions and advice.

(a) Salvador Mascarenhas

(b) Neil Bramley
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Inference from Causal Explanation

Possible Worlds

Table

Times Seen in Observation

Probability (x10~%)
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Causal Inference from Explanation

Causal Selections

A B C D Actual causes Causal Selection
0 1 0 O [A], [D], [A,D], [A,C], [A,C,D] [C]
1 0 1 O [A,C] [C]
1 1 0 O [C], [D] [C,D]
1 1 1 1 [A],[D],[AC], [AD], [D.C][ACD] [C]

Table: List of actual causes for each sample, as well as the intuitive causal selection given the
normality of variables A,B,C,and D.
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