# Inferences from Causal Selection Explanation

Nicolas Navarre

June 24, 2024

In collaboration with:
Can Konuk, Salvador Mascarenhas
Institut Jean Nicod | École Normale Supérieure
Neil Bramley
University of Edinburgh

<sup>&</sup>lt;sup>1</sup>Lombrozo (2012)

Two distinctions of explanations<sup>1</sup>:

▶ Product vs. process explanations

<sup>&</sup>lt;sup>1</sup>Lombrozo (2012)

- Product vs. process explanations
  - 1. Billy *chose* the carrot cake because it is his favourite.

<sup>&</sup>lt;sup>1</sup>Lombrozo (2012)

- Product vs. process explanations
  - 1. Billy *chose* the carrot cake because it is his favourite.
  - Billy will/would choose the carrot cake because it is his favourite.

<sup>&</sup>lt;sup>1</sup>Lombrozo (2012)

- Product vs. process explanations
  - 1. Billy *chose* the carrot cake because it is his favourite.
  - Billy will/would choose the carrot cake because it is his favourite.
- Selected vs. complete explanations

<sup>&</sup>lt;sup>1</sup>Lombrozo (2012)

- Product vs. process explanations
  - 1. Billy *chose* the carrot cake because it is his favourite.
  - Billy will/would choose the carrot cake because it is his favourite.
- Selected vs. complete explanations
  - 1. Billy ate the carrot cake because it is his favourite.

<sup>&</sup>lt;sup>1</sup>Lombrozo (2012)

- Product vs. process explanations
  - 1. Billy *chose* the carrot cake because it is his favourite.
  - Billy will/would choose the carrot cake because it is his favourite.
- Selected vs. complete explanations
  - 1. Billy ate the carrot cake because it is his favourite.
  - 2. Billy ate the carrot cake because it is his favourite *and* he was hungry.

<sup>&</sup>lt;sup>1</sup>Lombrozo (2012)

# Causal Explanations

<sup>&</sup>lt;sup>2</sup>Halpern (2016)

# Causal Explanations

**Actual Causation** (a cause): Explanations that describe what causes were causally responsible for an outcome are typically referred to as actual causation<sup>2</sup>.

<sup>&</sup>lt;sup>2</sup>Halpern (2016)

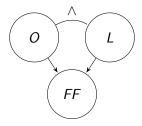
# Causal Explanations

**Actual Causation** (a cause): Explanations that describe what causes were causally responsible for an outcome are typically referred to as actual causation<sup>2</sup>.

**Causal Selection** (*the cause*): Selecting one set of causal variables that are considered the cause of an outcome. Depends on **counterfactual simulations** and on the **normality** of the variables.

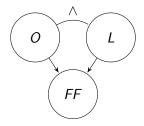
<sup>&</sup>lt;sup>2</sup>Halpern (2016)

#### Conjunction



Lightning strikes a forest (L) and with the oxygen in the air (O) a forest fire erupts (FF).

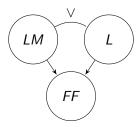
#### Conjunction



Lightning strikes a forest (L) and with the oxygen in the air (O) a forest fire erupts (FF).

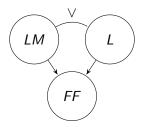
If the lightning strikes the forest and oxygen is present in the atmosphere, which one caused the forest fire?

Disjunction



A forest fire may be caused by either a lightning strike (L) or an arsonist dropping a lit match (LM).

Disjunction



A forest fire may be caused by either a lightning strike (L) or an arsonist dropping a lit match (LM).

If the lightning strikes the forest and the arsonist drops the lit match, which one caused the forest fire?

#### Theories of Casual Selection

<sup>&</sup>lt;sup>3</sup>lcard et al. (2017)

<sup>&</sup>lt;sup>4</sup>Quillien and Lucas (2023)

#### Theories of Casual Selection

► Necessity and Sufficiency Model<sup>3</sup> (NSM)

$$\kappa_P(\vec{X}, Y) = P(\vec{X} = \vec{x}') P^{\nu}_{\vec{X} \leftarrow \vec{x}'}(Y \neq y) + P(\vec{X} = \vec{x}^*) P^{\sigma}_{Y \neq v, \vec{X} = \vec{x}', \vec{X} \leftarrow \vec{x}^*}(Y = y)$$

<sup>&</sup>lt;sup>3</sup>Icard et al. (2017)

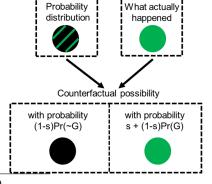
<sup>&</sup>lt;sup>4</sup>Quillien and Lucas (2023)

#### Theories of Casual Selection

► Necessity and Sufficiency Model<sup>3</sup> (NSM)

$$\kappa_P(\vec{X}, Y) = P(\vec{X} = \vec{x}') P^{\nu}_{\vec{X} \leftarrow \vec{x}'}(Y \neq y) + P(\vec{X} = \vec{x}^*) P^{\sigma}_{Y \neq \nu, \vec{X} = \vec{x}', \vec{X} \leftarrow \vec{x}^*}(Y = y)$$

► Counterfactual Effect Size Model<sup>4</sup> (CESM)



<sup>&</sup>lt;sup>3</sup>Icard et al. (2017)

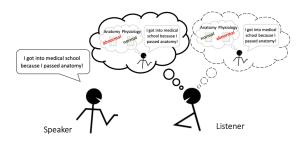
<sup>&</sup>lt;sup>4</sup>Quillien and Lucas (2023)

Previous Study

Kirfel et al. (2022) demonstrate that causal selection explanations carry information about normality.

#### Previous Study

Kirfel et al. (2022) demonstrate that causal selection explanations carry information about normality.



Previous Study

Particularly that conjunctive and disjunctive causal structures can be disambiguated:

Previous Study

Particularly that conjunctive and disjunctive causal structures can be disambiguated:



#### Motivation

Kirfel et al. (2022) demonstrate a three way interaction between the following properties:

- Causal selection
- Normality
- Causal structure

#### Motivation

Kirfel et al. (2022) demonstrate a three way interaction between the following properties:

- Causal selection
- Normality
- Causal structure

#### Limitations:

- Only look at simple conjunctive and disjunctive structures
- Lacks consideration of plural causal selection

#### Motivation

Kirfel et al. (2022) demonstrate a three way interaction between the following properties:

- Causal selection
- Normality
- Causal structure

#### Limitations:

- Only look at simple conjunctive and disjunctive structures
- ► Lacks consideration of plural causal selection

Two questions remain:

#### Motivation

Kirfel et al. (2022) demonstrate a three way interaction between the following properties:

- Causal selection
- Normality
- Causal structure

#### Limitations:

- Only look at simple conjunctive and disjunctive structures
- ► Lacks consideration of plural causal selection

#### Two questions remain:

1. Do causal selection judgements help with complex causal inference?

#### Motivation

Kirfel et al. (2022) demonstrate a three way interaction between the following properties:

- Causal selection
- Normality
- Causal structure

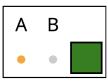
#### Limitations:

- Only look at simple conjunctive and disjunctive structures
- ► Lacks consideration of plural causal selection

#### Two questions remain:

- 1. Do causal selection judgements help with complex causal inference?
- 2. Do effective causal selection judgements depend on normality?

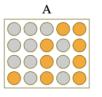
#### Observation Example



Push the button below to draw a new sample!

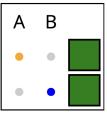
#### Remaining samples: 2

Draw sample





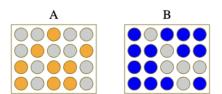
#### Observation Example



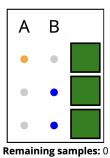
Push the button below to draw a new sample!

Remaining samples: 1

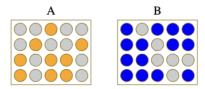
Draw sample



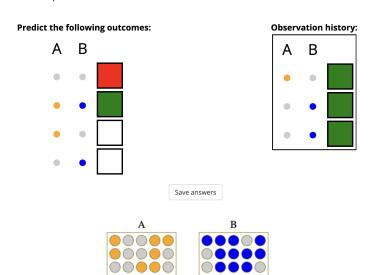
#### Observation Example



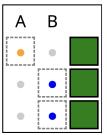
Start trial



#### Observation Example



#### **Explanation Example**



Push the button below to continue

Next





#### Explanations and Causal Structure

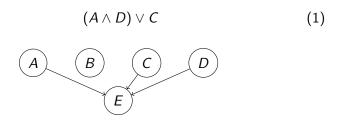
Three conditions for the kind of explanation:

- Causal inference from observations with no causal explanation (NE).
- Causal inference from observations with explanations of a cause (AC).
- Causal inference from observations with explanations of the cause (TC).

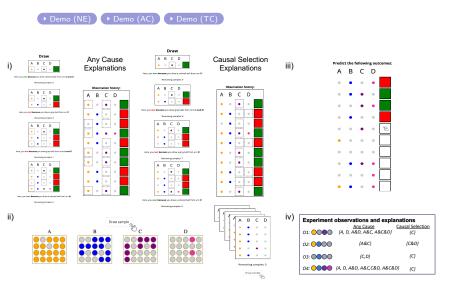
#### Explanations and Causal Structure

Three conditions for the kind of explanation:

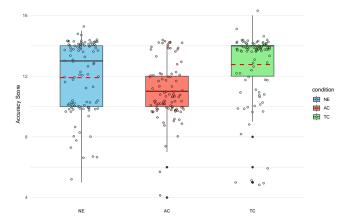
- Causal inference from observations with no causal explanation (NE).
- Causal inference from observations with explanations of a cause (AC).
- Causal inference from observations with explanations of the cause (TC).



#### Stimulus



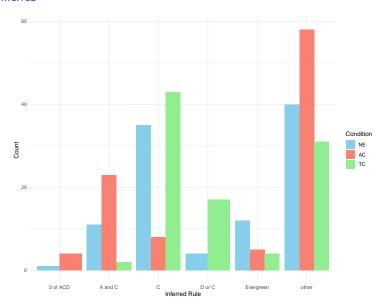
#### Results



Participants (N=298) in the TC condition were significantly better at accurately predicting world outcomes than those in the NE condition (p < 0.005). Participants in the AC condition were significantly worse at predicting the world outcomes than those in the NE condition (p < 0.003).

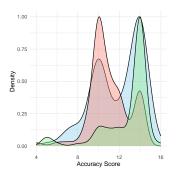
### Results

#### Rules inferred

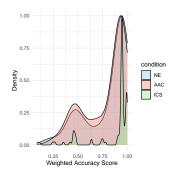


### Results

#### Normality in inference accuracy



(a) Accuracy score distribution by condition.



(b) Weighted accuracy score by condition

► Causal selection judgements encode information about the structure and normality of causal structures.

- ► Causal selection judgements encode information about the structure and normality of causal structures.
- ► Causal structures can be inferred from explanations.

- Causal selection judgements encode information about the structure and normality of causal structures.
- Causal structures can be inferred from explanations.
- ► Inference from explanation does depend on a representation of the normality of events

- Causal selection judgements encode information about the structure and normality of causal structures.
- Causal structures can be inferred from explanations.
- ► Inference from explanation does depend on a representation of the normality of events

### Thank you!

### **Bibliography**

- Bareinboim, E., Correa, J. D., Ibeling, D., and Icard, T. F. (2022). On pearl's hierarchy and the foundations of causal inference. Probabilistic and Causal Inference.
- Halpern, J. Y. (2016). Actual Causality. The MIT Press.
- Icard, T. F., Kominsky, J. F., and Knobe, J. (2017). Normality and actual causal strength. Cognition, 161:80-93.
- Kirfel, L., Icard, T., and Gerstenberg, T. (2022). Inference from explanation. Journal of Experimental Psychology: General, 151(7):1481–1501.
- Lombrozo, T. (2012). Explanation and abductive inference. In *The Oxford Handbook of Thinking and Reasoning*, pages 260–276. Oxford University Press.
- Quillien, T. and Lucas, C. G. (2023). Counterfactuals and the logic of causal selection. Psychological review.

# Inference from Causal Explanation

Possible Worlds

**Table** 

| Α | В | С | D | Times Seen in Observation | Probability (*10 <sup>-4</sup> ) |
|---|---|---|---|---------------------------|----------------------------------|
| 0 | 0 | 0 | 0 | 0                         | 216                              |
| 0 | 0 | 0 | 1 | 0                         | 24                               |
| 0 | 0 | 1 | 0 | 0                         | 144                              |
| 0 | 0 | 1 | 1 | 0                         | 16                               |
| 0 | 1 | 0 | 0 | 1                         | 324                              |
| 0 | 1 | 0 | 1 | 0                         | 36                               |
| 0 | 1 | 1 | 0 | 0                         | 216                              |
| 0 | 1 | 1 | 1 | 0                         | 24                               |
| 1 | 0 | 0 | 0 | 0                         | 1944                             |
| 1 | 0 | 0 | 1 | 0                         | 216                              |
| 1 | 0 | 1 | 0 | 4                         | 1296                             |
| 1 | 0 | 1 | 1 | 0                         | 144                              |
| 1 | 1 | 0 | 0 | 4                         | 2916                             |
| 1 | 1 | 0 | 1 | 0                         | 324                              |
| 1 | 1 | 1 | 0 | 0                         | 1944                             |
| 1 | 1 | 1 | 1 | 1                         | 216                              |

Table: List of all possible worlds and their prior probabilities.

# Causal Inference from Explanation

#### Causal Selections

| Α | В | С | D | Actual causes                         | Causal Selection |
|---|---|---|---|---------------------------------------|------------------|
| 0 | 1 | 0 | 0 | [A], [D], [A,D], [A,C], [A,C,D]       | [C]              |
| 1 | 0 | 1 | 0 | [A,C]                                 | [C]              |
| 1 | 1 | 0 | 0 | [C], [D]                              | [C,D]            |
| 1 | 1 | 1 | 1 | [A], [D], [A,C], [A,D], [D,C] [A,C,D] | [C]              |

Table: List of actual causes for each sample, as well as the intuitive causal selection given the normality of variables A,B,C,and D.

### **HP-Definition of Actual Cause**

### Definition (HP Actual Cause)

 $\vec{X}=\vec{x}$  is an actual cause of  $\varphi$  in the causal setting  $\langle \mathcal{M},\vec{u}\rangle$  if the following three conditions hold:

- 1.  $\langle \mathcal{M}, \vec{u} \rangle \models (\vec{X} = \vec{x}) \text{ and } \langle \mathcal{M}, \vec{u} \rangle \models \varphi$ .
- 2. There is a set  $\vec{W}$  of variables in  $(\mathbf{V} \cup \mathbf{U}) \setminus \vec{X}$  and a setting  $\vec{x}'$  of the variables in  $\vec{X}$  such that if  $\langle \mathcal{M}, \vec{u} \rangle \models \vec{W} = \vec{w}^*$ , then  $\langle \mathcal{M}, \vec{u} \rangle \models [\vec{X} \leftarrow \vec{x}', \vec{W} \leftarrow \vec{w}^*](\neg \varphi)$ .
- 3.  $\vec{X}$  is minimal; there is no strict subset  $\vec{X}'$  of  $\vec{X}$  such that  $\vec{X}' = \vec{x}'$  satisfies conditions 1. and 2., where  $\vec{x}'$  is the restriction of  $\vec{x}'$  to variables in  $\vec{X}'$ .

The superscript in  $\vec{w}^*$  represents that  $\vec{w}$  should take on the actual value of  $\vec{W}$ . The prime in  $\vec{x}'$  represents  $\vec{x}$  should be something other than the actual world value of  $\vec{X}$ . Lastly, if  $\vec{X}$  is an actual cause of  $\varphi$ , then every part of  $\vec{X}$  is also an actual cause of  $\varphi$ .

#### Structural Causal Model

A Structural Causal Model (SCM) is typically a tuple of the form  $\mathcal{M} = \langle \textbf{U}, \textbf{V}, \mathcal{F}, \textbf{P} \rangle^5.$ 

- 1. A set of exogenous variables denoted by  $\mathbf{U} = \{U_1, U_2, \dots, U_n\}.$
- 2. A set of endogenous variables denoted by  $\mathbf{V} = \{V_1, V_2, \dots, V_m\}$ .
- 3. A set of structural equations denoted by  $\mathbf{F} = \{F_1, F_2, \dots, F_n\}$ , where each equation relates an endogenous variable to a function involving other endogenous variables and exogenous variables.
- 4. A set of probability distributions denoted by  $\mathbf{P} = \{P_1, P_2, \dots, P_n\}$ , where each probability distribution corresponds to one of the exogenous variables.

<sup>&</sup>lt;sup>5</sup>Bareinboim et al. (2022)