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Explanations

Two distinctions of explanations1:

▶ Product vs. process explanations

1. Billy chose the carrot cake because it is his favourite.
2. Billy will/would choose the carrot cake because it is his

favourite.

▶ Selected vs. complete explanations

1. Billy ate the carrot cake because it is his favourite.
2. Billy ate the carrot cake because it is his favourite and he was

hungry.

1Lombrozo (2012)
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Causal Explanations

Actual Causation (a cause): Explanations that describe what
causes were causally responsible for an outcome are typically
referred to as actual causation2.
Causal Selection (the cause): Selecting one set of causal variables
that are considered the cause of an outcome. Depends on
counterfactual simulations and on the normality of the variables.

2Halpern (2016)
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Causal Example
Conjunction

O L

FF

∧

Lightning strikes a forest (L) and with the oxygen in the air (O) a
forest fire erupts (FF ).

If the lightning strikes the forest and oxygen is present in the
atmosphere, which one caused the forest fire?

4 / 21



Causal Example
Conjunction

O L

FF

∧

Lightning strikes a forest (L) and with the oxygen in the air (O) a
forest fire erupts (FF ).
If the lightning strikes the forest and oxygen is present in the
atmosphere, which one caused the forest fire?

4 / 21



Causal Example
Disjunction

LM L

FF

∨

A forest fire may be caused by either a lightning strike (L) or an
arsonist dropping a lit match (LM).

If the lightning strikes the forest and the arsonist drops the lit
match, which one caused the forest fire?
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Theories of Casual Selection

▶ Necessity and Sufficiency Model3 (NSM)

κP(X⃗ ,Y ) = P(X⃗ = x⃗ ′)Pν
X⃗←x⃗ ′

(Y ̸= y) + P(X⃗ = x⃗∗)Pσ
Y ̸=y ,X⃗=x⃗ ′,X⃗←x⃗∗

(Y = y)

▶ Counterfactual Effect Size Model4 (CESM)

3Icard et al. (2017)
4Quillien and Lucas (2023)
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Causal Inference from Explanation
Previous Study

Kirfel et al. (2022) demonstrate that causal selection explanations
carry information about normality.
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Causal Inference form Explanation
Motivation

Kirfel et al. (2022) demonstrate a three way interaction between
the following properties:

▶ Causal selection

▶ Normality

▶ Causal structure

Limitations:

▶ Only look at simple conjunctive and disjunctive structures

▶ Lacks consideration of plural causal selection

Two questions remain:

1. Do causal selection judgements help with complex causal
inference?

2. Do effective causal selection judgements depend on normality?
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Design
Observation Example
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Design
Explanation Example
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Design
Explanations and Causal Structure

Three conditions for the kind of explanation:

▶ Causal inference from observations with no causal explanation
(NE).

▶ Causal inference from observations with explanations of a
cause (AC).

▶ Causal inference from observations with explanations of the
cause (TC).

(A ∧ D) ∨ C (1)

A B C D

E
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Design
Stimulus

Demo (NE) Demo (AC) Demo (TC)

Any Cause
Explanations

Causal Selection
Explanations

Experiment observations and explanations
                                            Any Cause                   Causal Selection
O1:

O2:

O3:

O4:

i)

ii)

iii)

iv)

{A, D, A&D, A&C, A&C&D}  

{C,D}  

{A&C}  

{A, D, A&D, A&C,C&D, A&C&D}

{C}

{C}  

{C&D}  

{C}

16 / 21

https://web-risc.ens.fr/~nnavarre/experiments/ac1/acg/main1.html
https://web-risc.ens.fr/~nnavarre/experiments/ac1/acg/main2.html
https://web-risc.ens.fr/~nnavarre/experiments/ac1/acg/main3.html


Results
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Participants (N=298) in the TC condition were significantly better
at accurately predicting world outcomes than those in the NE
condition (p < 0.005). Participants in the AC condition were
significantly worse at predicting the world outcomes than those in
the NE condition (p < 0.003). 17 / 21



Results
Rules inferred
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Results
Normality in inference accuracy
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(b) Weighted accuracy score by
condition
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Conclusion

▶ Causal selection judgements encode information about the
structure and normality of causal structures.

▶ Causal structures can be inferred from explanations.

▶ Inference from explanation does depend on a representation of
the normality of events

Thank you!
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Inference from Causal Explanation
Possible Worlds

Table

A B C D Times Seen in Observation Probability (∗10−4)
0 0 0 0 0 216
0 0 0 1 0 24
0 0 1 0 0 144
0 0 1 1 0 16
0 1 0 0 1 324
0 1 0 1 0 36
0 1 1 0 0 216
0 1 1 1 0 24
1 0 0 0 0 1944
1 0 0 1 0 216
1 0 1 0 4 1296
1 0 1 1 0 144
1 1 0 0 4 2916
1 1 0 1 0 324
1 1 1 0 0 1944
1 1 1 1 1 216

Table: List of all possible worlds and their prior probabilities. 1 / 4



Causal Inference from Explanation
Causal Selections

A B C D Actual causes Causal Selection

0 1 0 0 [A], [D], [A,D], [A,C], [A,C,D] [C]
1 0 1 0 [A,C] [C]
1 1 0 0 [C], [D] [C,D]
1 1 1 1 [A], [D], [A,C], [A,D], [D,C] [A,C,D] [C]

Table: List of actual causes for each sample, as well as the intuitive
causal selection given the normality of variables A,B,C,and D.

2 / 4



HP-Definition of Actual Cause

Definition (HP Actual Cause)

X⃗ = x⃗ is an actual cause of φ in the causal setting ⟨M, u⃗⟩ if the
following three conditions hold:

1. ⟨M, u⃗⟩ |= (X⃗ = x⃗) and ⟨M, u⃗⟩ |= φ.

2. There is a set W⃗ of variables in (V ∪U)\X⃗ and a setting x⃗ ′

of the variables in X⃗ such that if ⟨M, u⃗⟩ |= W⃗ = w⃗∗, then
⟨M, u⃗⟩ |= [X⃗ ← x⃗ ′, W⃗ ← w⃗∗](¬φ).

3. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such that
X⃗ ′ = x⃗ ′ satisfies conditions 1. and 2., where x⃗ ′ is the
restriction of x⃗ ′ to variables in X⃗ ′.

The superscript in w⃗∗ represents that w⃗ should take on the actual
value of W⃗ . The prime in x⃗ ′ represents x⃗ should be something
other than the actual world value of X⃗ . Lastly, if X⃗ is an actual
cause of φ, then every part of X⃗ is also an actual cause of φ.

3 / 4



Structural Causal Model

A Structural Causal Model (SCM) is typically a tuple of the form
M = ⟨U,V,F ,P⟩5.
1. A set of exogenous variables denoted by

U = {U1,U2, . . . ,Un}.
2. A set of endogenous variables denoted by

V = {V1,V2, . . . ,Vm}.
3. A set of structural equations denoted by F = {F1,F2, . . . ,Fn},

where each equation relates an endogenous variable to a
function involving other endogenous variables and exogenous
variables.

4. A set of probability distributions denoted by
P = {P1,P2, . . . ,Pn}, where each probability distribution
corresponds to one of the exogenous variables.

5Bareinboim et al. (2022)
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