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Probabilistic Reasoning

Bayes' Theorem:
o(hle) — PLElnp(h)
p(e)

Common ‘fallacies’ in probabilistic reasoning:

e Conjunction fallacy: p(a A b) > p(a)

o Base-rate neglect: p(h|e) ~ p(e|h)
Theoretical perspectives on judgement under uncertainty:

@ Heuristics and biases (Tversky and Kahneman, 1974)

e Confirmation theory and evidential impact (Crupi et al., 2008)

e Causal model theory (Krynski and Tenenbaum, 2007)
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Reasoning

Confirmation Theory

Confirmation as Firmness (confirmss). e confirmss h (relative to
background supposition S ) iff p(hle A'S) > t, where t is some (possibly
contextual) threshold.

Confirmation as increase in Firmness (confirms;). e confirmss h
(relative to background supposition S ) iff p(hle A S) > p(h|S).

(a) Balls in a box. (b) Balls in a box and one is stuck.
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Reasoning

Confirmation Theory

Common confirmation measures!:

Q@ likelihood ratio: et
o .. p(hle)
@ probability ratio: o)
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© evidential impact: %

!Crupi and Tentori (2016)
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Reasoning
Causal Model Theory

@ Construct a causal model.
@ Set the parameters of the model.

© Infer probabilities of target values via Bayesian inference within the
model?.
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Causal Confirmation Theory

Judgements under uncertainty

@ Krynski and Tenenbaum (2007) demonstrate that causal explanations
assist in producing more accurate judgements under uncertainty

@ Confirmation Theory uses evidential impact as a measure
approximates the Bayesian posterior

@ Causal Model Theory and Confirmation Theory both capture these
aspects of reasoning with uncertainty

Can the two theories be pulled apart?
What are the interactions (if any) between these two theories?
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Design

Background Story

An ancient Mesopotamian village engages in an annual parade to celebrate
the harvest season.

Several men are selected to take part in the parade either as members or
as leaders.
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a) base-rates: 40% Youths
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(b) Base-rates: 70% Youths

Youths are represented as circles and Elders as squares.
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Design

Selections and Causal Explanations
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(a) Evidence: 75% Youths, (b) Evidence: 43% Youths,
33% Elders 66% Elders

@ Because of their greater wisdom the Elders fared better...
P(leader|Elder) > P(leader|Youth).

@ Because of their greater athleticism the Youths fared better...
P(leader|Elder) < P(leader|Youth).
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Mesopotamia

Selection proportion statistics

Proposed causal structures by condition:

Condition  PRIORS-POST LIK-POST
Age class  Youths Elders Youths Elders

Base-Rate 70 30 40 60
Likelihood 43% 66% 75% 33%

Posteriors  30/50 Youths (60%), 20/50 Elders (40%)

Table: Base-rates and likelihoods for each condition.

Nicolas Navarre University of Edinburgh Causal Confirmation Theory June 12, 2024 12/16



Mesopotamia

Questions

Posterior:

(1) Balthazar, a participant selected for the parade, got the red
mask. Is Balthazar more likely to be an Elder or a Youth?

Base-rates:

(2)  Among the originally selected parade members (before the bull
ritual), were there more Elders or Youths?

Likelihoods:

(3)  During the selection of the leaders of the parade, which group fared
better in the bull ritual, Youths or Elders?
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@ Subjects give significantly higher judgements to p( Youth|Leader)
when the evidence is in line with the posterior

o Causality of the evidence matters more than that of the base-rate
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Conclusion

@ Probabilistic reasoning is still likely confirmation-theoretic

o Confirmation theoretic reasoning is affected by causal structure
Theoretical Proposal:

Probabilistic reasoning is causal insofar as the confirmation measures are
computed as a function of the causal model that is represented.

Thank you
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